Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds on Davenport-Schinzel Sequences via Rectangular Zarankiewicz Matrices

An order-s Davenport-Schinzel sequence over an n-letter alphabet is one avoiding immediate repetitions and alternating subsequences with length s+2. The main problem is to determine the maximum length of such a sequence, as a function of n and s. When s is fixed this problem has been settled (see Agarwal, Sharir, and Shor [1], Nivasch [12] and Pettie [15]) but when s is a function of n, very li...

متن کامل

Tightish Bounds on Davenport-Schinzel Sequences

Let Ψs(n) be the extremal function of order-s Davenport-Schinzel sequences over an n-letter alphabet. Together with existing bounds due to Hart and Sharir (s = 3), Agarwal, Sharir, and Shor (s = 4, lower bounds on s ≥ 6), and Nivasch (upper bounds on even s), we give the following essentially tight bounds on Ψs(n) for all s: Ψs(n) =  n s = 1

متن کامل

8. Davenport-schinzel Sequences

Definition 18.1 A (n, s)-Davenport-Schinzel sequence is a sequence over an alphabet A of size n in which no two consecutive characters are the same and there is no alternating subsequence of the form .

متن کامل

Generalized Davenport-Schinzel Sequences

The extremal function Ex(u, n) (introduced in the theory of DavenportSchinzel sequences in other notation) denotes for a fixed finite alternating sequence u = ababa . . . the maximum length of a finite sequence v over n symbols with no immediate repetition which does not contain u. Here (following the idea of J. Nešetřil) we generalize this concept for arbitrary sequence u. We summarize the alr...

متن کامل

On numbers of Davenport-Schinzel sequences

One class of Davenport-Schinzel sequences consists of finite sequences over n symbols without immediate repetitions and without any subsequence of the type abab. We present a bijective encoding of such sequences by rooted plane trees with distinguished nonleaves and we give a combinatorial proof of the formula 1 k − n+ 1 ( 2k − 2n k − n )( k − 1 2n− k − 1 ) for the number of such normalized seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1989

ISSN: 0097-3165

DOI: 10.1016/0097-3165(89)90032-0